The 51 Pegasi b Fellowship provides postdoctoral scientists with the opportunity to conduct theoretical, observational, and experimental research in planetary astronomy.

Established in 2017, the Heising-Simons Foundation’s 51 Pegasi b Fellowship is named for the first exoplanet discovered orbiting a Sun-like star. The growing field of planetary astronomy studies celestial objects both within and beyond our solar system, bridging planetary science and astrophysics.

From accelerating our understanding of planetary system formation and evolution to our solar system and beyond, to advancing new technologies for detecting Earth-like worlds, 51 Pegasi b Fellows make unique contributions to the field.

The Fellowship provides:
- Up to $145,000 in support for independent research over three years with the option to extend to a fourth year.
- Mentorship by an established faculty member at the host institution.
- An annual summit to develop professional networks, exchange information and ideas, and foster collaboration.
- Option to apply for up to one year of unused funds to support the Fellow in a future faculty or permanent staff position at a university or non-profit institution.

The Heising-Simons Foundation is a family foundation based in Los Altos and San Francisco, California. The Foundation works with its many partners to advance sustainable solutions in climate and clean energy, enable groundbreaking research in science, enhance the education of our youngest learners, and support human rights for all people. Learn more at www.hsfoundation.org.
2021 and 2022 Fellows

ơi

University of California, Berkeley
Using advanced computational models to clarify planetesimal formation mechanisms and build out a more complete, coherent picture of planet creation.

HUAZHI GE
California Institute of Technology
Resolving the cloud dynamics of giant planets to inform future space missions and observations.

JULIANA GARCÍA - MEJÍA
Massachusetts Institute of Technology
Fashioning innovative astronomical instruments to discover and characterize terrestrial exoplanets around small, cool stars.

SAMUEL YEE
Harvard University
Surfacing trends and clues to planetary formation through the most extensive demographic study of Hot Jupiters to date.

MARIA STEINRUECK
University of Chicago
Enabling more accurate observational interpretations and predictions across a range of exoplanet types through three-dimensional climate modeling.

BRIANNA LACY
University of Texas at Austin
Constructing a theoretical framework to steer interpretations of observational data toward promising answers.

MALINA RICE
University of Chicago
Creating aooming simulation and analysis system optimized for high-contrast exoplanet signals.

RACHEL MONTIBACHER
University of Chicago
Employing the tools of information technology to train models to extract information from astronomical images.

EMILY MARTIN
University of California, Santa Cruz
Disentangling the connection between exoplanet clouds and planets using a variety of modeling tools.

BRITANY MILES
University of Wisconsin
Employing a framework to study exoplanet atmospheres through the lens of exoplanet chemistry.

LEONARDO KRAFF
University of Texas, Austin
Catching exoplanets in the process of losing their atmospheres with ground observatories and space telescopes to determine their next phase of evolution.

ELLEN PRICE
University of Chicago
Optimizing computational methods to address questions in planet formation through elegant solutions and simple simulations.

LEONARDO KRAPP
University of Arizona
Circumventing complex problems in planet formation theory by producing novel computational simulations of gas and dust dynamics.

YIFAN ZHOU
University of Texas at Austin
Watching exoplanets grow and evolve over multiple time periods to transform our understanding of their formation mechanisms and atmospheres.

CHRISTOPHER SELLERS, 2018 Fellow
American Astronomer, Nobel Institute of Technology

CLAIRE ESQUER ROUS, 2019 Fellow
American Astronomer, Nobel Institute of Technology

JASON WANG, 2018 Fellow
NASA Postdoctoral Fellow, Harvard University

IAN WONG, 2019 Fellow
NASA Postdoctoral Fellow, NASA Goddard

WHERE ARE THEY NOW?

2023 Fellows

JULIANA GARCIA-MEJIA
Massachusetts Institute of Technology
Using advanced computational models to clarify planetesimal formation mechanisms and build out a more complete, coherent picture of planet creation.

RIN QIU
Catherine, Anthony, and Stephen Frank Endowed Professor of Chemistry and Professor of the Center for Computational Science, Institute of Computational Chemistry and Bioinformatics, University of Chicago
Developing algorithms to study molecular dynamics and electronic structure using ultrafast time-resolved spectroscopy.

RIN QIU
Catherine, Anthony, and Stephen Frank Endowed Professor of Chemistry and Professor of the Center for Computational Science, Institute of Computational Chemistry and Bioinformatics, University of Chicago
Developing algorithms to study molecular dynamics and electronic structure using ultrafast time-resolved spectroscopy.

YAPENG ZHANG
University of California, Berkeley
Using advanced computational models to clarify planetesimal formation mechanisms and build out a more complete, coherent picture of planet creation.

JASON DITTMANN, 2017 Fellow
Assistant Professor, University of Florida

CHENG LI, 2019 Fellow
Assistant Professor, University of Michigan

THADDEUS KOMACEK, 2018 Fellow
Assistant Professor, University of Maryland

CLARA SOUSA-SILVA, 2019 Fellow
Assistant Professor, Bard College

XINTING YU, 2019 Fellow
Assistant Professor, Hebrew University

JASON WANG, 2018 Fellow
NASA Postdoctoral Fellow, Harvard University

PETER LAD, 2017 Fellow
Staff Scientist, Georgia Institute of Technology

THEODORE KOSEMAC, 2019 Fellow
Assistant Professor, University of Texas at Austin

BRIANNA LACY
University of Texas at Austin
Constructing a theoretical framework to steer interpretations of observational data toward promising answers.

MALINA RICE
University of Chicago
Creating a computational simulation and analysis system optimized for high-contrast exoplanet signals.

RACHEL MONTIBACHER
University of Chicago
Employing the tools of information technology to train models to extract information from astronomical images.

EMILY MARTIN
University of California, Santa Cruz
Disentangling the connection between exoplanet clouds and planets using a variety of modeling tools.

BRITANY MILES
University of Wisconsin
Employing a framework to study exoplanet atmospheres through the lens of exoplanet chemistry.

LEONARDO KRAFF
University of Texas, Austin
Catching exoplanets in the process of losing their atmospheres with ground observatories and space telescopes to determine their next phase of evolution.

ELLEN PRICE
University of Chicago
Optimizing computational methods to address questions in planet formation through elegant solutions and simple simulations.

LEONARDO KRAPP
University of Arizona
Circumventing complex problems in planet formation theory by producing novel computational simulations of gas and dust dynamics.

YIFAN ZHOU
University of Texas at Austin
Watching exoplanets grow and evolve over multiple time periods to transform our understanding of their formation mechanisms and atmospheres.

CHRISTOPHER SELLERS, 2018 Fellow
American Astronomer, Nobel Institute of Technology

CLAIRE ESQUER ROUS, 2019 Fellow
American Astronomer, Nobel Institute of Technology

JASON WANG, 2018 Fellow
NASA Postdoctoral Fellow, Harvard University

IAN WONG, 2019 Fellow
NASA Postdoctoral Fellow, NASA Goddard

WHERE ARE THEY NOW?